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Diastereoselective Total Synthesis of (� )-Codeine

Marie Varin, Elvina Barr(, Bogdan Iorga,* and Catherine Guillou*[a]

Codeine 1 and morphine 2, the principal constituents of
opium, continue to attract the attention of organic chemists
thanks to both their biological activities and their unique
structure.[1] Their complex pentacyclic skeleton, which in-
cludes a quaternary carbon center, has stimulated extensive
efforts. To date there have been more than 20 total synthe-
ses of codeine (1), morphine (2), and thebaine (3).[2] We
were interested in the synthesis of codeine for two reasons:
first, codeine was found to be an allosteric potentiating
ligand of nicotinic receptors,[3] and second we have a general
program underway in the laboratory in which we have
shown that tricyclic spirocyclohexadienones are valuable in-
termediates for the synthesis of natural products in the
Amaryllidacea galanthamine-type, maritidine-type, and As-
pidosperma alkaloids.[4]

In an effort to develop new allosteric potentiating ligands
of nicotinic receptors with a codeine-type scaffold, we initi-
ated our own studies of a total synthesis of codeine. Herein
we disclose a total diastereoselective synthesis of (� )-co-
deine (1), which involves a new construction of the mor-
phinan skeleton. The present study provides an efficient
method for the elaboration of the quaternary carbon at

C-13 and for the highly diastereoselective introduction of
the C-14 stereogenic center of the morphinan system.

Our retrosynthetic analysis of (� )-codeine (1) is shown in
Scheme 1. Codeine could be obtained from amine inter-

mediate 4 by using an intramolecular hydroamination reac-
tion to form the D ring. Compound 4 could in turn be pre-
pared from aldehyde 5. In our synthetic pathway, we plan-
ned to use for the first time a Claisen-type rearrangement to
introduce the C-14 substituent. This type of rearrangement
applied to compound 6 would provide a precursor of the al-
dehyde 5 and control the stereochemistry of the substituent
at C-14 of 5. The tricyclic amine 6 would be obtained from
the spirocyclohexadienone 7 by a lactone ring opening with
an amine followed by a spontaneous intramolecular Michael
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Scheme 1. Retrosynthesis of (� )-codeine 1.
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addition of the resulting phenol to cyclohexadienone. Com-
pound 7 could be prepared in two steps from the ester 8 by
an intramolecular Heck reaction followed by an oxidation.

Our synthesis started with esterification of 2-iodo-6-me-
thoxyphenol (9)[5] with acid 10[6] according to a known pro-
cedure.[4a] Heck cyclization of 8 was accomplished in 67%
yield under new conditions. Indeed, in the absence of phos-
phine ligands, the reaction time for the cyclization of 8 to 11
was greatly reduced from three days[4a] to 5 h.[7] After hy-
drolysis of the dioxolane group of 11 with triphenylcarbeni-
um tetrafluoroborate,[4a] oxidation of the a,b-unsaturated
ketone function of the resulting product to the correspond-
ing dienone 7[4a] was realized in the presence of (PhSeO)2O
and NaHCO3 (Scheme 2).

The reaction of lactone 7 with N-methylbenzylamine with
concurrent amide formation and lactone ring opening af-
forded the corresponding enone, which was then reduced
with LiAlH4 to give the allylic alcohol 12 in 77% yield
(Scheme 3). With a ready access to the key tricyclic allylic
alcohol 12, we then turned our attention to the introduction
of the crucial substituent at C-14.

Several approaches have been developed to introduce this
substituent based on the intramolecular Heck reaction,[2a,e,8]

the tandem radical cyclization,[9] 1,4-addition of vinyl mag-
nesium bromide (in the presence of copper(I) bromide) to
a,b-enone,[10] CpCO-mediated [2+2+2] cyclization of func-
tionalized 4-(3-butynyl)benzofurans,[11] or by aldol condensa-
tion.[2c]

In our study, introduction of the C-14 substituent starting
from allylic alcohol 12 proved difficult. Attempts to achieve
a Claisen rearrangement on 12 under KazmaierHs,[12] Ire-
landHs,[13] or JohnsonHs[14] conditions failed.

However, we found that, under EschenmoserHs[15] condi-
tions, the C-14 substituent could be diastereoselectively in-
troduced. Heating 12 in the presence of dimethylacetamide
dimethylacetal in decalin at 215 8C afforded the expected
amide 13 (49%) and diene 14 (32%) as a by-product
(Scheme 3). In spite of numerous attemps,[16] it was not pos-
sible to reduce the amount of 14 produced.

Reduction of the amide 13 with PhSiH3 in the presence of
Ti ACHTUNGTRENNUNG(OiPr)4

[17] yielded the aldehyde 15, which upon treatment
with p-TSA in toluene furnished the amine 16 (Scheme 4).
The next step was the introduction of the allylic alcohol
function. To prevent oxidation of the nitrogen atom, the N-
benzyl group was first removed in the presence of 1-chloro-
ACHTUNGTRENNUNGethyl chloroformate to give the corresponding secondary
amine, which was then protected with TsCl to give the sulfo-
namide 17. Oxidation of 17 with SeO2 in presence of
tBuOOH in dioxane furnished the allylic alcohol 18 with in-
correct stereochemistry. The latter was thus oxidized into
the corresponding ketone 19 by reaction with Dess–Martin
periodinane. Reduction of ketone 19 proceeded stereoselec-
tively using NaBH4 in methanol to give the required alcohol
20 now having the correct stereochemistry. The final step re-
quired to construct the D ring of codeine involves a hydro-
ACHTUNGTRENNUNGamination reaction. This type of cyclization was recently ap-
plied to a precursor of codeine (using HgACHTUNGTRENNUNG(OAc)2 and then
LiAlH4) to give (+)-codeine in 17.6% yield.[2d] In our case,
we found that exposure of the sulfonamide 20 to lithium in
liquid ammonia[18] resulted in reductive cyclization to furnish
codeine (1) in satisfactory yield (51%).

In conclusion, we have achieved a diastereocontrolled
synthesis of (� )-codeine (1) from the tricyclic spirocyclo-
hexadienone 7 in 10 steps. An intramolecular Heck reaction
followed by a Claisen–Eschenmoser rearrangement, a reduc-
tive deprotection, and an intramolecular hydroamination re-
action constitute the key steps of this new total synthesis of
codeine.

Scheme 2. Synthesis of tricyclic spirocyclohexadienone 7. EDCI= 1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide, DMAP=4-dimethylami-
nopyridine, dba=dibenzylideneacetone.

Scheme 3. Synthesis of amide 13.
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Scheme 4. Synthesis of (� )-codeine 1. p-TSA=p-toluenesulfonic acid.
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